IFPGA

Team sdmay20-38

Justin Sung - Embedded Systems Engineer
Zixuan Guo - Systems Diagram Expert
Jake Meiss - Electrical Engineer
Andrew Vogler - FPGA Design Engineer
Jake Tener - Software Technician

Client/Advisor: Dr. Henry Duwe

Project Vision

e What was the project attempting to accomplish?

o To create a self-sustaining low-power system capable of carrying out computations
® Why?

o Current battery production

o Self-sustaining energy

e A very high level approach

o Supply self-sustaining power for a low power FPGA

o Use an external MCU to execute sound classification computation and accelerate a part of the software
through an FPGA

Conceptual/Visual Sketch

e \What we planned to design
o A batteryless FPGA system capable of speeding up computations.

O Performing Sound Classification on the Embedded System
e Targeted Clientele
o Henry Duwe and his research assistants.

e What is Unique about the approach?

o Designing a foundational model for any batteryless FPGA computation

Functional Requirements

e Batteryless and Data transmission off-chip
o Power provided by means of RF Energy Harvesting

o UART

e FPGA
O Ability on accelerating the calculation for data from MCU on FPGA
O Execute the sound classification on the MCU
O There will be a checkpointing in the software that can allow the program execution pause and continue while
power toggling

Non-Functional Requirements

e Performance & Compatibility & Usability
O Voltage and Power thresholds
O Accuracy of measurements
O Compatible with other testbench

Project Plan

e Semesterl
O Research and Develop Design
O Choose Parts
O Finalize Design

e |Integration
O Develop and order PCB
O Develop and deploy software onto embedded system
O Integrate PCB and embedded system

e Testing
O Boot Sequence
O Run Computation
O Data Flow and Storage

e Finalize System
O Provide useful and complete documentation

Risks & Mitigation

e Platform power consumption

o The power requirements for the platform should be addressed by the power design

o Intermittent execution handling

o Intermediate data will be lost upon FPGA power-down during computation.

o Software checkpointing

e Broad project scope

o Progress reviews at meetings

Software Design

Steps in the Software Process:

e Performing Sound Analysis (Sampling, MFCC Generation)

e Neural Network Creation and Training (Keras Model, Python Script)

e Develop Testing Script for input sound (Python)

e Quantize Model in preparation to upload to Embedded System (Tf Lite Model)
e Profile Testing Script to determine target process for acceleration

e Develop low-level C++ testing script to interface with Embedded System

e Test C++ script to determine accuracy in relation to the Python script

e Upload Model and testing script onto Embedded System

Sine Wave

Sound Analysis /\ /\ /\ /

time

amplitude

e Sampling

o Take an analog sound and convert it into a digital array

o Sounds are sampled at 22,050 times per second

o Stored in along array known as audio_data (~80,000 floats)
e Generate MFCC

Frame the audio data into 40 frames

“investopedia.com”

Using Fourier transform, gather frequency of sound at each time T for its amplitude for each frame

Generate a value (MFCC Coefficient) to represent these 3 values

O O O O

Combine values into an array that represents an MFCC for each of the 40 frames
O Average each MFCC to one value and add it to a new array “Scaled MFCC”
e Scaled MFCC

MFCC Coefficients

0 05 1.0 15 0 25 30
Time (s)

O Represents the MFCC of the entire sound, used in training and as input for classificauon “haythamfayek.com”

e Librosa (Python model) vs Aquila (Embedded System Application)

Neural Network Process

e Audio Classification Model
Trained with UrbanSound 8k’s dataset of 8,732 sounds
10 Unique Classifications
Input Shape (1,40)
Output shape (1,10)
e \Weights of the Model
o The weights are trained by generating a MFCC spectrogram of each sound sample

©)
©)
©)
©)

and pairing it with its classification

e Prototyped in Python on PC as a Keras Model

e Quantized into Tf Lite model

e Test Script takes an input .wav file and runs inference with the model
o Qutputs Classification

dense_1_input

FullyConnected

weights <256x40>
bias <256>
keep_num_dims = false

FullyConnected

weights <256x256>
bias <256>
keep_num_dims = false

FullyConnected

weights <10x256>
bias <10>
keep_num_dims = false

Identity l

Uploading Process to Embedded System

Targeting Inference/Prediction on the FPGA and Analysis on the Microcontroller

e Converting MFCC generation from Librosa method to C functions

O Using Aquila sound analysis library

O Sampling in integers, rather than floats, and even after conversion

sampling values are slightly off

O MFCC functions operate differently than Librosa as well, so MFCC
values are also slightly off

® Covid-19 Implications

o Due to the social distancing, our embedded system was not
developed/tested enough to handle the software application,
so we are unable to put the process into action, but the C++
testing script showed 50% accuracy on a given sound

””

“it.emcelettronica.com

/ Initialization \

) i TiLite Micro
TiLite Get_Model Interpreter

Collect Input (Byte Stream or
Wav file)

Software Design Flow

eturns Model with
Quantized Weights
ready for Inference

Pass in model, and
tensor_arena

AllocateTensors()

A

/ Analyze Sound \

Sample Audio into . Create a scaled
Data Array Generate MFCC's MFCC

A 4

Y

dke in amplitude array, samplifg
rate, and split the sound into 40
pariitions. Then use Fourier transform
to generate MFCC's (float array) for,
each partiton

akes a mean value o
each MFCC array and

then adds it to a new
array with all (40) mean

Take in Wav file and
sample it. Return an array
of floats that is the
amplitudes of the sound

A 4

/ Run Inference \

Set Interpreter Input | Set Output tensors
tensors > Interpeter.Invoke() "1 and gather output

4

Check shape of
output (1,10) and
gather output data

Initialize Interpreter to
run inference on input
data

heck shape of inpu
(1,40), load input
spectrogram data

N

Use output
data to
classify -
then transmit!

— et

Intended Software Implementation Diagram

[Input .wav file

Output Vector
(Predicted Sound

—
f—

MSP430

Load C++ sound
analysis script

Receive .wav file
- sample and
calculate MFCC
Coefficients

Prepare and
format output
vector for offload

o N

MFCC
Coefficients

s ™

Igloo Nano

Load Matrix
Multiplication

Perform Matrix
Multiplication
on Coefficienis

and Weights

Output Vector |«

\ 7

—

Weight
Portions

J‘,

MSP430

Load and store

trained model

Load portions of
Weights and
prepare fo
transmit to Igloo
Nano

Power Management Diagram

.
*

<. Microphone -

/ Power Flow

Data Connection

Capacitor

6 Amplifier

: A

((T)) RF Input o RFtoDC L Voltage Booster Master Programming

\

Converter Enable MSP430 Header

.............

Regulator '
Voltage Boost .
SUpariiaor 3.3V ;

Powercast Platform : : Slave Programming

Regt;lalor Igloo Nano Header
Buck
1.5V

Transmitter

cmmemeeeee——————
.

B Slave
MSP430

Electrical Schematics

e Powercast

e Microcontrollers
e FPGA

e Challenges

o Control Circuits
m Regulators
m Flash Freeze
m Reset
o Programmable Capacitor Bank

POWERCAST

MASTER - MSP430

SLAVE - MSP430

REGULATORS

SLAVE - IGLOO NANO

CAPACITOR BANK

CINE Y

HEADERS

Printed Circuit Board

e 4 layer Board
e 3 power rails
e Challenges

o RF Antenna Specs
o Art, not a science

e PCB has been fabricated, awaiting

population and testing

Embedded System Architecture

e First MSP430 handles most of the software execution

o Processor handles software execution

o Memory contains the program and necessary libraries

o Data communication between the MSP430s and Nano
e Nano will work as a hardware accelerator.

o MAC hardware targeting inference

o Memory stores neural network weights and intermediate data
e Second MSP430 handles intermediate data and assembly.

o Memory stores the all of the data produced from the Nano and the neural network weights

Embedded System Architecture
Flow and MAC Design

Hardware Platform

MSP430 IGLOO nano

Processor

SPI
MFCC Generation
Scaled MFCC Coefficients AMBA: MAC Accelerator
Intermediate Data Controller ["AMBA—] PE Calculation part)
Prediction Vector
Assembly A\ 2
Bus Bus
Controller| Controller|
Memory —>]
[TAMBA FLASH
£
3
S [—AMBA SRAM -
% Overall Architecture x01
§ x02
@ — x03 A
4 N s R
UART L ext 7
Vector a01,a02,a03 PE1 > PE2 PE3 feefpeeeeeeeeeee-
MSP430 \ J - \ R
e >
First Cycle to Third Cycle
A4 ARNEENER 4 }
[Bus Controller] 4) R
Next 7
PE4 > PE5 PE6 preferememmemseseees
Processor Memory
g J N J
>
Intermediate Data Second Cycle to Forth|Cycle O
Weights ra ~ Ve Ve A ~
PE7 > PE8 PE9 -
N J . N J
Third Cycle to Fifth cmit : Next 7 Next 7
! Forth Cycle to Sixth Cycle Fifth cycle to Seventh Cycle

Prototype Implementations

e |GLOO Nano Example Projects

o Interfacing projects

o Read and write projects

e Sound Classification

o Setup the software pipeline and passed a sound recording of Durham through the pipeline

Test Plan

Functional .
. . : Unit Testing : Non-Functional
® How is testing performed? Testing { J E Testing
O Software tests
O Power analysis ¥
O Observing output [IntegrationTestingJ
® it Test |
Component/unlt TeSFIng . ' Performance, Usability,
O Independent functionality of each component - N and Compatibility Tesiing
O White/Black box testing System Testing]
@® |nterface/integration testing i ’
O Power supply L Y S
O 1/0 between Microcontroller and FPGA Application Testing
. >

® System level testing/Acceptance testing
O Mostly by Non-functional tests (Is enough power supplied? Does data flow as expected7)

Engineering Standards and Design Practices

e |EEE Code of Ethics

o Honesty about the functionality and usefulness (#'s 3 & 6)
m Intellectual integrity for previous work is necessary for eventual published research on
the platform
o Emphasis on Teamwork (#'s /7, 8, & 9)
o To make the highest quality product within our capability (#s 5 & 6)

e \Waterfall Model & Agile Sprints

Conclusion

e Lessons learned
o Run tests early

o Make plans early but prepare to have them change

e What we would have done differently

o Choose specific FPGA after software scope is defined better

