
iFPGA
Team sdmay20-38

Justin Sung - Embedded Systems Engineer
Zixuan Guo - Systems Diagram Expert

Jake Meiss - Electrical Engineer
Andrew Vogler - FPGA Design Engineer

Jake Tener - Software Technician

Client/Advisor: Dr. Henry Duwe

Project Vision

● What was the project attempting to accomplish?
○ To create a self-sustaining low-power system capable of carrying out computations

● Why?

○ Current battery production

○ Self-sustaining energy

● A very high level approach

○ Supply self-sustaining power for a low power FPGA

○ Use an external MCU to execute sound classification computation and accelerate a part of the software

through an FPGA

Conceptual/Visual Sketch

●What we planned to design

○ A batteryless FPGA system capable of speeding up computations.

○ Performing Sound Classification on the Embedded System

● Targeted Clientele

○ Henry Duwe and his research assistants.

● What is Unique about the approach?

○ Designing a foundational model for any batteryless FPGA computation

Functional Requirements
● Batteryless and Data transmission off-chip

○ Power provided by means of RF Energy Harvesting
○ UART

● FPGA
○ Ability on accelerating the calculation for data from MCU on FPGA
○ Execute the sound classification on the MCU
○ There will be a checkpointing in the software that can allow the program execution pause and continue while

power toggling

Non-Functional Requirements

● Performance & Compatibility & Usability
○ Voltage and Power thresholds
○ Accuracy of measurements
○ Compatible with other testbench

Project Plan
● Semester 1

○ Research and Develop Design
○ Choose Parts
○ Finalize Design

● Integration
○ Develop and order PCB
○ Develop and deploy software onto embedded system
○ Integrate PCB and embedded system

● Testing
○ Boot Sequence
○ Run Computation
○ Data Flow and Storage

● Finalize System
○ Provide useful and complete documentation

Risks & Mitigation

● Platform power consumption
○ The power requirements for the platform should be addressed by the power design

● Intermittent execution handling
○ Intermediate data will be lost upon FPGA power-down during computation.

○ Software checkpointing

● Broad project scope
○ Progress reviews at meetings

Software Design

Steps in the Software Process:

● Performing Sound Analysis (Sampling, MFCC Generation)

● Neural Network Creation and Training (Keras Model, Python Script)

● Develop Testing Script for input sound (Python)

● Quantize Model in preparation to upload to Embedded System (Tf Lite Model)

● Profile Testing Script to determine target process for acceleration

● Develop low-level C++ testing script to interface with Embedded System

● Test C++ script to determine accuracy in relation to the Python script

● Upload Model and testing script onto Embedded System

Sound Analysis

● Sampling
○ Take an analog sound and convert it into a digital array
○ Sounds are sampled at 22,050 times per second
○ Stored in a long array known as audio_data (~80,000 floats)

● Generate MFCC
○ Frame the audio data into 40 frames
○ Using Fourier transform, gather frequency of sound at each time T for its amplitude for each frame
○ Generate a value (MFCC Coefficient) to represent these 3 values
○ Combine values into an array that represents an MFCC for each of the 40 frames
○ Average each MFCC to one value and add it to a new array “Scaled MFCC”

● Scaled MFCC
○ Represents the MFCC of the entire sound, used in training and as input for classification

● Librosa (Python model) vs Aquila (Embedded System Application)

“investopedia.com”

“haythamfayek.com”

Neural Network Process

● Audio Classification Model
○ Trained with UrbanSound 8k’s dataset of 8,732 sounds
○ 10 Unique Classifications
○ Input Shape (1,40)
○ Output shape (1,10)

● Weights of the Model
○ The weights are trained by generating a MFCC spectrogram of each sound sample

and pairing it with its classification
● Prototyped in Python on PC as a Keras Model
● Quantized into Tf Lite model
● Test Script takes an input .wav file and runs inference with the model

○ Outputs Classification

Uploading Process to Embedded System

Targeting Inference/Prediction on the FPGA and Analysis on the Microcontroller

● Converting MFCC generation from Librosa method to C functions
○ Using Aquila sound analysis library
○ Sampling in integers, rather than floats, and even after conversion

sampling values are slightly off
○ MFCC functions operate differently than Librosa as well, so MFCC

values are also slightly off
● Covid-19 Implications

○ Due to the social distancing, our embedded system was not
developed/tested enough to handle the software application,
so we are unable to put the process into action, but the C++
testing script showed 50% accuracy on a given sound

“it.emcelettronica.com””

Software Design Flow

Intended Software Implementation Diagram

Power Management Diagram

Electrical Schematics

● Powercast

● Microcontrollers

● FPGA

● Challenges

○ Control Circuits
■ Regulators
■ Flash Freeze
■ Reset

○ Programmable Capacitor Bank

Printed Circuit Board

● 4 layer Board

● 3 power rails

● Challenges

○ RF Antenna Specs
○ Art, not a science

● PCB has been fabricated, awaiting

population and testing

Embedded System Architecture

● First MSP430 handles most of the software execution

○ Processor handles software execution

○ Memory contains the program and necessary libraries

○ Data communication between the MSP430s and Nano

● Nano will work as a hardware accelerator.

○ MAC hardware targeting inference

○ Memory stores neural network weights and intermediate data

● Second MSP430 handles intermediate data and assembly.

○ Memory stores the all of the data produced from the Nano and the neural network weights

Embedded System Architecture
Flow and MAC Design

Prototype Implementations

● IGLOO Nano Example Projects

○ Interfacing projects

○ Read and write projects

● Sound Classification

○ Setup the software pipeline and passed a sound recording of Durham through the pipeline

Test Plan

● How is testing performed?
○ Software tests
○ Power analysis
○ Observing output

● Component/Unit Testing
○ Independent functionality of each component
○ White/Black box testing

● Interface/integration testing
○ Power supply
○ I/O between Microcontroller and FPGA

● System level testing/Acceptance testing
○ Mostly by Non-functional tests (Is enough power supplied? Does data flow as expected?)

Engineering Standards and Design Practices

● IEEE Code of Ethics
○ Honesty about the functionality and usefulness (#’s 3 & 6)

■ Intellectual integrity for previous work is necessary for eventual published research on
the platform

○ Emphasis on Teamwork (#’s 7, 8, & 9)
○ To make the highest quality product within our capability (#’s 5 & 6)

● Waterfall Model & Agile Sprints

Conclusion

● Lessons learned
○ Run tests early
○ Make plans early but prepare to have them change

● What we would have done differently

○ Choose specific FPGA after software scope is defined better

