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Project Vision

e What was the project attempting to accomplish?

o To create a self-sustaining low-power system capable of carrying out computations
® Why?

o  Current battery production

o  Self-sustaining energy

e A very high level approach

o  Supply self-sustaining power for a low power FPGA

o Use an external MCU to execute sound classification computation and accelerate a part of the software
through an FPGA



Conceptual/Visual Sketch

e \What we planned to design
o A batteryless FPGA system capable of speeding up computations.

O Performing Sound Classification on the Embedded System
e Targeted Clientele
o Henry Duwe and his research assistants.

e What is Unique about the approach?

o Designing a foundational model for any batteryless FPGA computation



Functional Requirements

e Batteryless and Data transmission off-chip
o Power provided by means of RF Energy Harvesting

o UART

e FPGA
O Ability on accelerating the calculation for data from MCU on FPGA
O Execute the sound classification on the MCU
O There will be a checkpointing in the software that can allow the program execution pause and continue while
power toggling

Non-Functional Requirements

e Performance & Compatibility & Usability
O Voltage and Power thresholds
O Accuracy of measurements
O Compatible with other testbench



Project Plan

e Semesterl
O  Research and Develop Design
O  Choose Parts
O  Finalize Design

e |Integration
O  Develop and order PCB
O  Develop and deploy software onto embedded system
O Integrate PCB and embedded system

e Testing
O  Boot Sequence
O Run Computation
O Data Flow and Storage

e Finalize System
O Provide useful and complete documentation



Risks & Mitigation

e Platform power consumption

o The power requirements for the platform should be addressed by the power design

o Intermittent execution handling

o Intermediate data will be lost upon FPGA power-down during computation.

o Software checkpointing

e Broad project scope

o Progress reviews at meetings



Software Design

Steps in the Software Process:

e Performing Sound Analysis (Sampling, MFCC Generation)

e Neural Network Creation and Training (Keras Model, Python Script)

e Develop Testing Script for input sound (Python)

e Quantize Model in preparation to upload to Embedded System (Tf Lite Model)
e Profile Testing Script to determine target process for acceleration

e Develop low-level C++ testing script to interface with Embedded System

e Test C++ script to determine accuracy in relation to the Python script

e Upload Model and testing script onto Embedded System



Sine Wave

Sound Analysis /\ /\ /\ /
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e Sampling

o Take an analog sound and convert it into a digital array

o Sounds are sampled at 22,050 times per second

o Stored in along array known as audio_data (~80,000 floats)
e Generate MFCC

Frame the audio data into 40 frames

“investopedia.com”

Using Fourier transform, gather frequency of sound at each time T for its amplitude for each frame

Generate a value (MFCC Coefficient) to represent these 3 values

O O O O

Combine values into an array that represents an MFCC for each of the 40 frames
O  Average each MFCC to one value and add it to a new array “Scaled MFCC”
e Scaled MFCC

MFCC Coefficients
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O  Represents the MFCC of the entire sound, used in training and as input for classificauon “haythamfayek.com”

e Librosa (Python model) vs Aquila (Embedded System Application)



Neural Network Process

e Audio Classification Model
Trained with UrbanSound 8k’s dataset of 8,732 sounds
10 Unique Classifications
Input Shape (1,40)
Output shape (1,10)
e \Weights of the Model
o The weights are trained by generating a MFCC spectrogram of each sound sample
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and pairing it with its classification

e Prototyped in Python on PC as a Keras Model

e Quantized into Tf Lite model

e Test Script takes an input .wav file and runs inference with the model
o Qutputs Classification

dense_1_input

FullyConnected

weights <256x40>
bias <256>
keep_num_dims = false

FullyConnected

weights <256x256>
bias <256>
keep_num_dims = false

FullyConnected

weights <10x256>
bias <10>
keep_num_dims = false

Identity l



Uploading Process to Embedded System

Targeting Inference/Prediction on the FPGA and Analysis on the Microcontroller

e Converting MFCC generation from Librosa method to C functions

O Using Aquila sound analysis library

O  Sampling in integers, rather than floats, and even after conversion

sampling values are slightly off

O  MFCC functions operate differently than Librosa as well, so MFCC
values are also slightly off

® Covid-19 Implications

o Due to the social distancing, our embedded system was not
developed/tested enough to handle the software application,
so we are unable to put the process into action, but the C++
testing script showed 50% accuracy on a given sound
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Intended Software Implementation Diagram
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Power Management Diagram
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Electrical Schematics

e Powercast

e Microcontrollers
e FPGA

e Challenges

o Control Circuits
m Regulators
m Flash Freeze
m Reset
o Programmable Capacitor Bank
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Printed Circuit Board

e 4 layer Board
e 3 power rails
e Challenges

o RF Antenna Specs
o Art, not a science

e PCB has been fabricated, awaiting

population and testing




Embedded System Architecture

e First MSP430 handles most of the software execution

o Processor handles software execution

o Memory contains the program and necessary libraries

o Data communication between the MSP430s and Nano
e Nano will work as a hardware accelerator.

o MAC hardware targeting inference

o Memory stores neural network weights and intermediate data
e Second MSP430 handles intermediate data and assembly.

o Memory stores the all of the data produced from the Nano and the neural network weights



Embedded System Architecture
Flow and MAC Design
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Prototype Implementations

e |GLOO Nano Example Projects

o Interfacing projects

o Read and write projects

e Sound Classification

o Setup the software pipeline and passed a sound recording of Durham through the pipeline



Test Plan

Functional .
. . : Unit Testing : Non-Functional
® How is testing performed? Testing { J E Testing
O Software tests
O Power analysis ¥
O Observing output [IntegrationTestingJ
® it Test |
Component/unlt TeSFIng . ' Performance, Usability,
O Independent functionality of each component - N and Compatibility Tesiing
O White/Black box testing System Testing ]
@® |nterface/integration testing i ’
O Power supply L Y S
O 1/0 between Microcontroller and FPGA Application Testing
. >

® System level testing/Acceptance testing
O Mostly by Non-functional tests ( Is enough power supplied? Does data flow as expected7 )



Engineering Standards and Design Practices

e |EEE Code of Ethics

o Honesty about the functionality and usefulness (#'s 3 & 6)
m Intellectual integrity for previous work is necessary for eventual published research on
the platform
o Emphasis on Teamwork (#'s /7, 8, & 9)
o To make the highest quality product within our capability (#s 5 & 6)

e \Waterfall Model & Agile Sprints



Conclusion

e Lessons learned
o Run tests early

o Make plans early but prepare to have them change

e What we would have done differently

o Choose specific FPGA after software scope is defined better



